Faster-GS: Analyzing and Improving Gaussian Splatting Optimization

Florian Hahlbohm'! Linus Franke?

{lastname}@cg.tu-bs.de

Martin Eisemann®
! Computer Graphics Lab, TU Braunschweig, Germany

Marcus Magnor!

2Inria, Université Cote d’ Azur, France
{firstname.lastname}@inria.fr

https://fhahlbohm.github.io/faster-gaussian-splatting

Time: 6min 35s
VRAM: 7.44 GiB

Time: 24min 2s
VRAM: 10.7 GiB

Mip-NeRF 360 Scenes

N .Taming-3DGS* 3DGS.
m .l | Less VRAM i
% 3 l StopThePop'
®
é Speedy-Splat’
7
<
51
-9
6 *
Ours
<— Faster
5
4 6 8 10 12 14 16 18

Training Time (min)

Figure 1. Our method, Faster-GS, substantially accelerates training and reduces GPU memory (VRAM) usage compared to the original
3DGS algorithm [37] without altering quality or number of Gaussians (left). Averaged over all Mip-NeRF360 scenes on an RTX 4090 GPU
(right), we train 4.1x faster with 30% less VRAM than 3DGS. On the Deep Blending dataset (not depicted), the speedup is more than 5.2x.
We also outperform improved implementations from prior works [25, 56, 65]. TBaseline modified to keep quality /#Gaussians unchanged.

Abstract

Recent advances in 3D Gaussian Splatting (3DGS) have
focused on accelerating optimization while preserving re-
construction quality. However, many proposed methods en-
tangle implementation-level improvements with fundamental
algorithmic modifications or trade performance for fidelity,
leading to a fragmented research landscape that complicates
fair comparison. In this work, we consolidate and evaluate
the most effective and broadly applicable strategies from
prior 3DGS research and augment them with several novel
optimizations. We further investigate underexplored aspects
of the framework, including numerical stability, Gaussian
truncation, and gradient approximation. The resulting sys-
tem, Faster-GS, provides a rigorously optimized algorithm
that we evaluate across a comprehensive suite of benchmarks.
Our experiments demonstrate that Faster-GS achieves up to
5% faster training while maintaining visual quality, estab-
lishing a new cost-effective and resource efficient baseline
for 3DGS optimization. Furthermore, we demonstrate that
optimizations can be applied to 4D Gaussian reconstruction,
leading to efficient non-rigid scene optimization.

1. Introduction

In their seminal work on 3D Gaussian Splatting (3DGS) [37],
Kerbl et al. introduce a scene representation and novel view
synthesis framework that unifies the strengths of classi-
cal point-based rendering [103] with gradient-based opti-
mization techniques from differentiable volumetric render-
ing [58].

Owing to its remarkable combination of visual fidelity
and real-time performance, 3DGS rapidly became the domi-
nant approach for novel view synthesis and inspired a broad
range of subsequent research in computer vision and com-
puter graphics [51, 57, 79, 87], as well as interest in domains
such as digital film production [62]. The extensive adop-
tion underscores the importance and impact of cost-effective
reconstructions, the central theme of this paper.

The sustained momentum of this research area can par-
tially be attributed to the rapid emergence of numerous exten-
sions addressing specific aspects of the original formulation,
including anti-aliasing [98], densification [39, 68], compres-
sion [1], rendering approximations [24, 65], and improve-
ments in inference speed and scalability [15, 38, 48, 56, 73].
Notably, recent performance-oriented variants achieve high-

https://fhahlbohm.github.io/faster-gaussian-splatting

quality reconstructions within minutes, even on consumer-
grade hardware, further accelerating research and experi-
mentation in this field. However, the rapid pace of progress
also poses a practical challenge: the continuous influx of
improvements often outpaces the ability to integrate and
evaluate them cohesively when developing new methods.

Our work is motivated by two main observations: First,
recent research on 3D Gaussian Splatting (3DGS) has led
to a fragmented landscape of extensions and optimizations,
making it increasingly difficult to assess the upper bound of
achievable performance when integrating all available net-
positive contributions. This issue is particularly evident for
training performance, where the goal is to reduce optimiza-
tion time while maintaining the reconstruction quality of the
original 3DGS method [37]. Advances in this domain are
often tightly integrated with more fundamental modifications
to the algorithm or underlying representation [24, 65]. Other
improvements, in contrast, have been developed primarily
for inference (i.e., novel view synthesis rendering) [15, 73],
although parts of these techniques could, in principle, be
adapted for training, which we demonstrate in this work.

Second, while community-driven frameworks such as
gsplat [96] have made significant progress toward extensi-
ble and modular implementations that facilitate fundamental
modifications to the algorithm [3 1, 86], this hinders the inte-
gration of performance optimization targeting the original
pipeline [37, 103], revealing a gap in the research landscape.

Our work aims to provide a solution to the core prob-
lem implied by these observations, i.e., the lack of an up-
dated 3DGS baseline regarding training performance. Thus,
in this paper, we both survey the 3DGS follow-up works
for performance improvements as well as integrate novel
improvements. We evaluate their efficiency and integrate
them into a new, optimized 3D Gaussian Splatting frame-
work (cf. Fig. 1). Specifically, we observe that most re-
cent approaches aim to reduce memory accesses on the
GPU through fewer duplicated Gaussians during differen-
tiable rasterization [25, 65, 82], reduced memory accesses
during sorting [73], or memory-efficient thread-to-workload
setups [15, 56], all with varying degrees of effectiveness. Ad-
ditionally, several works report performance gains through
kernel fusion, where multiple computational stages are com-
bined into a single pass [17, 24, 56].

Beyond integrating, comparing, and evaluating these es-
tablished techniques, we reveal and introduce methods to
further decrease memory access costs by leveraging mem-
ory coalescence, which improves cache locality and band-
width utilization. We apply all optimizations to the training
schedule of 3DGS and showcase a speedup of up to 5x
in training speeds, resulting in an average reconstruction
time of 163 seconds for the 3DGS benchmark [37] with full
quality and all Gaussians. We specifically exclude lower-
precision and hardware-level optimizations [46, 48], pruning

strategies [25], dense Gaussian initialization [43], or feed-

forward pipelines [6, 35] as they fundamentally change re-

sults, whereas our aim is to retain compatibility with the
original widely-used CUDA-based differentiable rasteriza-

tion pipeline [37].

We further showcase the effectiveness of this work and
its potential impact on future 3DGS-based research by ex-
tending our implementation to multi-dimensional Gaussians
(4D) for dynamic scene reconstruction based on the work by
Yang et al. [93]. We make the following key contributions:
* A comprehensive survey, discussion, and evaluation of

3DGS training optimization strategies, providing a com-
parative analysis of previously published improvements.

* Novel performance optimizations that exploit memory co-
alescence and fuse gradient computations and parameter
updates, significantly accelerating training without com-
promising reconstruction quality.

* The introduction of Faster-GS, an integrated and state-of-
the-art 3DGS training pipeline that consolidates all effec-
tive techniques for real-time performance.

Our full implementation, including code/scripts for the pre-

sented experiments, are available on our project page. Apart

from a plug-and-play solution for existing 3DGS methods, it
provides a testbed designed to facilitate future research and
fair comparison within this rapidly evolving domain.

2. Preliminaries and Related Work
2.1. 3D Gaussian Splatting (3DGS)

To model a scene, 3DGS [37] uses a set of unnormalized 3D
Gaussian point primitives, each of which is defined by its 3D
mean /i, anisotropic 3D covariance Y, and a scalar opacity
o € (0,1). Additionally, each primitive is equipped with
a set of spherical harmonics (SH) coefficients to represent
view-dependent color changes. In practice, 3DGS uses coef-
ficients up to degree three & € R3*16 that can be evaluated
for a given viewing direction to obtain an RGB color c.

Rendering. To render a Gaussian, 3DGS first transforms
relevant Gaussian parameters to camera space and employs
splatting [103] to obtain a 2D Gaussian in screen space.

% + ¢y . ~ T
poo =\ gy o |o Wit A=W s, py, 2, 1) (D)
Az Y

O Ty _fy/iy
O

where W € R**4 the transformation from world to cam-
era space, J € R%*3 the affine approximation of the per-
spective projection, and f, fy, ¢z, ¢, the intrinsic camera
parameters, i.e., focal lengths and optical center in screen
coordinates. The result is a 2D Gaussian that can, after
truncation (Kerbl et al. [37] use ~3.330), be rasterized and

@ 0 _fT/Lz
Sop = JWiis 135 Wilg 10, J = [75 5

evaluated at any pixel position 2 € R?*! efficiently, yielding
a transparency value « for blending:

a=o- efé(xfuzD)Tzz—Dl(meD)' 3)

Pixel colors are computed by alpha-blending all N fragments
in each pixel in front-to-back order:

N i1
C= ZaiTiCi +Tnepg with T = H(l —aj), 4
i=1 i

where ¢y, is an arbitrary background color. As an approxi-
mation to exact but prohibitively slow per-pixel sorting [65],
3DGS employs approximate, object-level sorting, where 3D
Gaussians are sorted based on ji, prior to rasterization.

Activation Functions. To ensure stable, gradient-based
optimization, 3DGS employs activation functions for all pa-
rameters except p. Opacity is constrained to lie in (0, 1) by
applying a Sigmoid activation and the view-dependent color
c is clipped to be positive. To ensure X is a valid covariance,
i.e., positive semi-definite, 3DGS optimizes separate scaling
and rotation components from which ¥ is computed during
rendering using ¥ = RSST R", where R is a 3D rotation ma-
trix and S is a diagonal scaling matrix. R is optimized as a
quaternion that is normalized before rendering. Furthermore,
so that the scales of the 3D Gaussian remain positive, the ex-
ponential function is used as an activation prior to rendering.
Mathematically, this means S stores the standard deviations
of the 3D Gaussian along the principal axes defined by R,
i.e., the three eigenvectors of 2.

Optimization Schedule and Hyperparameters. Starting
from a sparse point cloud or random initialization, Kerbl e?
al. [37] introduce adaptive density control (ADC), a set of
carefully tuned heuristics for cloning, splitting, and pruning
Gaussians during optimization. Specifically, 3DGS tracks
the magnitude of the u,p gradients during training for all
Gaussians and clones or splits Gaussians at regular inter-
vals. Note that this growing set of Gaussians causes memory
fragmentation, slowing down optimization in later iterations.

The training schedule and hyperparameters Kerbl et al.
provided with the initial code release have mostly remained
unchanged in follow-up work. Models are trained for 30000
iterations, in each of which an image is rendered from a
randomly sampled training viewpoint and compared with
the ground truth image, with losses as a combination of L1
and D-SSIM and parameter updates with Adam [41]. For a
full breakdown of the schedule, see Sec. A.

An important change that has been integrated into the
official 3DGS codebase of Kerbl er al. [37] since the initial
release is a change in the opacity learning rate, which was
halved from 0.05 to 0.025 following Mallick et al. [56].
This change affects the number of Gaussians created during
optimization, with the new, lower learning rate leading to
slightly cleaner reconstructions with fewer Gaussians.

2.2. Improvements and Follow-up Works

Rendering. At the heart of the original 3DGS algorithm
and implementation by Kerbl ez al. [37] is a tile-based, dif-
ferentiable software rasterizer implemented in C++/CUDA.
To reduce overhead, extensions for computing tight bound-
ing boxes and exact splat/tile intersections have been pro-
posed [25, 65, 82]. A major effort has also been on reducing
approximations and artifacts in 3DGS rendering by moving
to ray-based evaluation schemes [24, 59, 77, 99] or proper
volumetric rendering [3-5, 12] to avoid distortion artifacts
tied to the original splatting approach [33], improving blend-
ing accuracy at the pixel level [24, 30, 40, 65], and suitable
anti-aliasing strategies [74, 98]. Other works focus on im-
proving performance specifically during inference, e.g., to
speed up rendering when the number of primitives is high
by devising optimized pipelines for sorting Gaussians [73],
or improving the underlying data access patterns and control
flow [15, 21]. Complementary to these approaches, several
works target architecture-level optimizations and use hard-
ware acceleration [46, 48, 90], which trade configurability
and numerical precision for performance. Recent work also
investigates efficient rendering on HMDs through foveated
rendering [17, 80].

Optimization. During optimization, subsequent works im-
prove the original algorithm by analyzing and enhancing the
underlying densification heuristics [14, 19, 68, 97], distribut-
ing Gaussians based on anchor points [52], integrating prob-
abilistic models [39], or fully replacing densification in favor
of dense initialization [43]. An equally important aspect
of optimization is avoiding excessive growth in the number
of Gaussians, e.g., by pruning obsolete Gaussians [18, 61]
or by reducing the number created during optimization in-
directly by repeatedly reducing the opacity of each Gaus-
sian [65]. Other work addresses challenges commonly asso-
ciated with real-world data, e.g., camera lens distortions [86],
dynamic distractors [70], and textureless regions and light-
ing variations, which can be resolved through depth reg-
ularization [11] and decoupled appearance modules [49].
Recent works also investigate alternatives for updating the
Gaussian parameters during training by extending the Adam
optimizer [41] to account for visibility [56] or by replac-
ing it with second-order optimization algorithms [34, 45].
Furthermore, adaptive Gaussian scheduling [9] improves op-
timization speeds and feed-forward methods rely on large,
pretrained models to fully avoid per-scene optimization and
reduce reliance on dense input images [6, 10, 35, 76, 78, 88].

Representation and Applications. Efficiency and portabil-
ity, especially to allow for the reconstruction of larger scenes
also recently gained interest. Approaches in this area reason
about the importance of Gaussians and their attributes to ad-
just how they are stored [1] and loaded [102], or apply level-

of-detail techniques to enable fast and high-quality rendering
of large scenes [38, 44, 67, 84, 91]. Significant effort has also
been invested in extending 3DGS to non-rigid, i.e., dynamic
scenes [32, 53, 83, 85, 89, 92, 93], efficient editing of trained
models [8, 54, 73], and meshing [7, 20, 22, 31, 66, 99, 100].
Beyond the original 3D Gaussian-based representation, there
are also multiple works that build on the underlying pipeline
proposed by Kerbl et al. [37], but use different primitives to
e.g. improve surface reconstruction [31, 95], the represen-
tation of sharp edges [27, 28, 50, 81], or enable exact, i.e.,
overlap-aware volumetric rendering [55].

GPU Optimization. In this work, we exploit various GPU
optimization techniques to accelerate training, which allows
us to achieve significant speedups over previously intro-
duced techniques. GPUs follow a SIMT (single-instruction
multiple-threads) compute paradigm with individual small
kernels, which is computationally fast due to the high amount
of parallelism in the system [29]. Kernel efficiency is com-
monly determined by the highest throughput. Typically, ker-
nels are either memory-bound (spending most of their time
waiting for or fetching data) or compute-bound, where the
arithmetic instructions take the majority of the time. Based
on this, different optimization techniques can be used, such
as exploiting GPU shared memory to allow multiple threads
to load and access data efficiently and share costs. For details,
see the comprehensive survey of Hijma et al. [29].

3. Method

We introduce a high-performance 3DGS optimization frame-
work, Faster-GS, which follows the same paradigm as the
original method [37] with significant speed increases. We
first describe the scope and basis for this work (Sec. 3.1),
then consolidate and review recent optimization techniques
for 3DGS (Sec. 3.2), and integrate further improvements
(Sec. 3.3). Lastly, we present easy integration into 4D Gaus-
sian Splatting (Sec. 3.4).

3.1. Scope and Basis

Gaussian Splatting Performance. Rendering splats with
large screen space extensions involves scattered memory
writes and is a common performance issue compared to,
e.g., pixel-sized splats [16, 69, 71]. Kerbl et al. [37] cir-
cumvent this problem by using a tile-based software ras-
terizer, which splits the image-plane into 16x16 tiles and
intersects the bounding box of each splat with them, dupli-
cating Gaussians for later stages into per-tile splat lists while
streamlining memory. Processing the splat lists is severely
memory-bound, especially due to the high number of floats
necessary for each Gaussian (see Sec. 2.1), which need to
be loaded. As such, reducing memory and memory accesses
is the predominant way to accelerate 3DGS optimization,
which we will discuss in the following sections.

Scope of this Work. Our objective is to adhere closely to the
original 3DGS optimization and outcomes, facilitating easy
integration into existing works as well as prevalent frame-
works [37, 75, 96]. We avoid extensive pruning or culling
during reconstruction, which can enhance performance; how-
ever, it incurs (minimal) quality losses [14, 18, 25, 65]. Ad-
ditionally, we avoid compression, as it requires a careful
trade-off between quality and compute [1]. However, while
outside the scope of this work, further integration of pruning
or compression should greatly increase speeds further [25].

Basis Implementation. For a clean testbed and open-source
version, we developed a refactored 3DGS implementation
with several improvements aimed at enhancing numerical
stability, efficiency, and modularity. In particular, using
front-to-back alpha blending for the backward pass (Eq. (4))
removes the need for division-by-zero checks, and refined
handling of degenerate quaternions of Gaussian covariances
stabilizes gradients. Furthermore, explicit handling of usp
gradients and visibility masks reduces VRAM overhead. For
further details, see Sec. B.1. This basis version increases
performance by about 15% compared to Kerbl et al. [37].

3.2. A Survey of Recent Improvements

In the following, we compile and group techniques from
recent 3DGS literature to address memory bottlenecks, en-
suring no negative impact on reconstruction quality. We
highlight required contributions to the training pipeline and
integrate minor novel optimizations in them.

Splat Bounding. The splatting algorithm of Egs. (1) and (2)
results in a 2D Gaussian on the image plane. 3DGS skips all
fragments created during rasterization where « (see Eq. (3))
is below 7, = 1/255. This corresponds to truncating the
Gaussian at roughly 3.330 and allows bounding the relevant
area of the splat with a 2D ellipse. As efficient tile-based
rendering requires creating per-tile lists of all contributing
splats, the bounding box of this 2D ellipse is of interest. In
3DGS, Kerbl et al. use a square-shaped bounding box, which
— as previously discussed by Radl et al. [65] — underestimates
the size of this bounding box for opaque, axis-aligned splats.
This is because each splat is bound with an axis-aligned
square around the circle with radius 3¢ instead of 3.330,
the value corresponding to 7. A natural improvement used
in prior works [25, 65, 82] is to bound the splats with an
axis-aligned rectangle instead of a square, where the center
of the rectangle is at uyp and its half-extents are given by
/2o, , and /Yop, , respectively.

The opacity o of the Gaussian can also be factored in by
multiplying —2 In(7/o) with the radicand before applying
the square root. This factor follows from setting Eq. (3) equal
to 7, and solving for the numerator of the exponent. This
full, opacity-aware formulation leads to a notable decrease
in false positives included in each per-tile splat list.

Tile-based Culling. While the aforementioned tight rect-
angles are the optimal axis-aligned bounding box, they can
still overestimate tile intersections for some splats. To elimi-
nate this remaining overhead, Radl et al. [65] and Hanson et
al. [25] propose algorithms for efficiently computing what
tiles each ellipse overlaps with. Hanson et al. iterate over
the shorter side of the bounding rectangle and determine
the first and last tile a splat may overlap with in each row/
column, which minimizes the number of computations but
may cause warp divergence when the rectangle sizes are very
different. In contrast, Radl er al. implement a load-balanced
approach for checking all tiles inside the bounding rectangle
by computing the point where the value of the Gaussian is
maximal for each tile. For our implementation, we select the
approach by Radl et al. as we determined it to be faster due
to the simpler control flow and added load balancing, but
note that the two approaches are not mutually exclusive.

Sorting. To create the per-tile splat lists used for the tiled
rasterization approach, 3DGS writes key/value pairs for
each tile/Gaussian pair. The original implementation uses
64-bit keys, where the most significant 32 bits indicate the
tile index and the 32 least significant ones contain the bits
of fi., i.e., depth information. After writing these key/value
pairs to a large buffer, they are sorted using a single radix
sort to obtain depth-sorted lists of splats for each tile. Recent
work by Schiitz er al. [73] shows that separating this sorting
step into two stages, one to establish depth ordering and
a second to obtain per-tile lists, reduces VRAM usage as
well as the total time spent on sorting. Note that this change
requires using a stable sorting algorithm, e.g., radix sort. See
Sec. B.2 for details.

Per-Gaussian Backward. In the original 3DGS imple-
mentation, by far the most expensive operation in terms of
runtime is the backward pass computing the alpha blending
gradients. This is because each splat may contribute to an
arbitrary number of pixels, which introduces the need for
using atomic operations for accumulation. As explored by
Durvasula et al. [13], this is computationally suboptimal,
which they solve through custom atomic functions.

Recent work by Mallick et al. [56] avoids this problem
by parallelizing over Gaussians instead of pixels in the back-
ward pass, which reduces the number of required atomic
operations by a factor equal to the number of pixels in each
tile, i.e., 256 as usually a tile size of 16x16 pixels is used for
3DGS. For efficiency, they store the alpha blending state at
each non-empty pixel after every 32" splat in the respective
tile list during the forward pass. While this approach speeds
up training significantly by addressing a major bottleneck, it
is the only addition that increases VRAM usage.

We integrate and improve the design of Mallick et al. [56]
by exploiting shared memory to further reduce memory costs
and reduce overall VRAM allocations (see Sec. B.3).

Rasterization Kernel Fusion. While the PyTorch-based
frontend of the original 3DGS implementation makes it very
flexible and easy to extend, most instructions are set up
as non-fused, individual CUDA kernels, which frequently
have to load and store buffers. Two methods for mitigating
this are employed: First, prior works [24, 56] skip the con-
catenation of the two SH coefficient buffers (3DGS stores
these separately to allow for different learning rates of the
view-independent and view-dependent bands) and pass these
buffers separately to the rasterization backend. This fuses the
concatenation into the rasterization kernel and has positive
effects on performance (see Sec. 4). Second, we fuse the
activation functions for the scales, rotations, and opacities
of the Gaussians into the rasterizer to avoid any PyTorch-
related overhead. This is already commonly used to speed
up inference rendering [24, 73] and for training we can also
fuse the gradient computations required for added benefits.

3.3. Refining Optimized Implementations

Integrating the previously surveyed optimizations results in a
strong reduction in memory costs and improved performance.
We further investigate optimization techniques, adapting this
optimized baseline.

Parameter Updates. As we will show in our experiments, a
surprisingly expensive part of the training pipeline is the op-
timizer steps, which adjust each Gaussian’s parameters. We
find that the main performance issue with the original 3DGS
implementation w.r.t. to the optimizer originates from the
use of a non-fused Adam update routine. Recent versions of
PyTorch allow users to avoid this by passing fused=True.
A slightly faster alternative involves using FusedAdam from
the NVIDIA apex library as a drop-in replacement.

However, for further increased performance, we develop
our own Adam implementation in which we precisely match
the behavior of the PyTorch implementation while optimiz-
ing away all unnecessary overhead. It fully exploits the
fusion of the kernel into CUDA, together with fast math oper-
ations and fewer overall instructions through fused-multiply
additions, further accelerating the optimization.

Locality-preserving Densification. Through the strong
reduction of memory costs, we find that memory layout
becomes a throttling factor. During densification, new Gaus-
sians are added at the end of the parameter buffers, which
causes spatially close Gaussians to be far apart in memory,
which results in uncoalesced memory accesses, as neighbor-
ing threads need to access different parts of the memory.

To better align Gaussians, we introduce a simple addition
to training when densification is active. We regularly ap-
ply z-ordering [72] to the current set of Gaussians to ensure
neighboring Gaussians in 3D are also close inside the param-
eter buffers. This reduces warp divergence and cache misses,
resulting in faster training when scenes contain many Gaus-

sians. While z-ordering is computationally efficient (roughly
4 ms per million Gaussians), we find that frequent applica-
tion has diminishing returns. We empirically determined
performing this step every 5000 iterations works well across
scenes. We further observe that it performs effectively only
when used with the per-Gaussian backward pass, as numer-
ous atomic operations in the original backward pass would
otherwise heighten atomic contention.

Fusing Backward and Optimizer. As we will show in
our experiments, applying all aforementioned improvements
leads to a major speedup over the original 3DGS implementa-
tion. When profiling the performance of the resulting frame-
work, we find that the GPU spends between 40% and 60% of
the total training time on the optimized Adam update routine.
To alleviate this bottleneck, we fuse the parameter updates
directly into the backward pass of the rasterization module
by first loading moments and computing all parameter up-
dates during gradient computation. This reduces VRAM
requirements (especially for large amounts of Gaussians) as
no additional buffers for the parameters are necessary. How-
ever, to maintain correctness w.r.t. the Adam step, we need
to perform parameter updates for parameters receiving a gra-
dient of zero in a given iteration, e.g., due to their Gaussian
being outside the viewing frustum. This reduces attainable
performance improvements with this fused approach.

A recent idea by Mallick et al. [56] is to skip updates
for these invisible Gaussians, which fits our fused design
exceptionally well. We see this as an optional extension for
further acceleration, however, as it can cause inconsistencies
and performance regressions compared to the original 3DGS
implementation (see our evaluation and Mallick et al. [56]).

3.4. Extension to Dynamic Scenes

Managing dynamic objects in a scene is a critical issue in 3D
reconstruction. Although these elements can occasionally
be considered distractors [70], the dynamic object, such as
a human, frequently constitutes the most relevant aspect of
a scene. We integrate our performance-optimized Gaussian
Splatting framework to support optimization of 4D Gaus-
sians based on the approach by Yang et al. [93]. A 4D Gaus-
sian is constructed analogously to a 3D Gaussian (Sec. 2.1),
with the addition of two parameters accounting for the mean
and scale along the temporal dimension. The 4D rotation is
separated into a left-isoclinic and a right-isoclinic rotation,
each represented by a quaternion. For rendering a given
timestep ¢, Yang et al. compute the conditional 3D Gaussian:

H3pe = p1:3 + S1:3455 4 (E — pa), ©)
Yapje = X1:3,1:3 — 21;3,42;}124,1:3- (6)
In combination with the value of the marginal distribution,
i.e., the 1D Gaussian p(t) = N (t; pa, X4,4) evaluated at ¢,

multiplied by the result of Eq. (3), Yang ef al. develop a
differentiable approach for 4D Gaussian rendering.

We integrate this approach into our optimized 3DGS
framework by adapting the data model accordingly and ex-
tending the rasterizer kernels to compute the conditional /
marginal Gaussians and the relevant gradients in the forward
and backward pass respectively. We also extend our training
schedule to match that of Yang et al., who render and propa-
gate the loss for multiple images in each training iteration.
We note that with this, the previous optimizations are directly
transferable to 4D Gaussian optimization.

4. Evaluation

We evaluate our developed framework in a comprehensive
suite of experiments with three main goals. Confirming that
the quality has not regressed relative to pertinent baselines,
examining the speed enhancements related to each addition
both individually and collectively, and analyzing the exten-
sion of our non-rigid reconstruction method.

4.1. Setup

As baselines, we compare with the official 3DGS imple-
mentation by Kerbl et al. [37], the 3DGS implementation
of Radl et al. with tight, opacity-aware bounding boxes and
load-balanced tile-based culling [65], a variant of Speedy-
Splat [25] only using the SnugBox and AccuTile features,
and the 3DGS-accel branch of the official 3DGS codebase.
The latter is effectively identical to the 3DGS implemen-
tation from Taming-3DGS [56], which uses opacity-aware
tile-based culling without load balancing, per-Gaussian back-
wards, and separate SH buffers within the rasterizer. For all
methods, we use the fused SSIM implementation by Goel ef
al. as proposed in Taming-3DGS [56] during loss computa-
tion. We unify hyperparameters across all methods, which
is necessary following a recent change in the official 3DGS
codebase. Training images are uploaded to VRAM before
optimization, which is excluded from the reported training
times but included in peak VRAM. Unless otherwise noted,
all experiments were conducted on the same hardware using
a single RTX 4090 GPU. We use the standard benchmark for
3DGS methods, i.e., 13 scenes from the Mip-NeRF360 [2],
Tanks and Temples [42], and Deep Blending [26] datasets
with a 7:1 train/test split. Image quality metrics (PSNR,
SSIM, and LPIPS [101]) are computed under identical con-
ditions, i.e., with the same script, where we ensure a correct
LPIPS computation by normalizing images to [—1, 1]. We
also use pre-downscaled images for training and testing when
these are provided with the dataset [2].

4.2. Results

In Tab. 1, we show averaged results for baselines and our
implementation. As expected, all methods achieve the same
image quality and optimize to roughly the same number of
Gaussians. Note that image quality results can vary signifi-
cantly between runs, even when using the same fixed random

Table 1. Quantitative comparisons on the Mip-NeRF360, Tanks and Temples, and Deep Blending datasets. For baselines marked with | we
enable only those contributions that do not affect quality. The three best results are highlighted in green in descending order of saturation.

Mip-NeRF360 [2]

Tanks and Temples [42]

Deep Blending [26]

Method PSNRT SSIM™T LPIPS* Train* VRAMY #Gs* [PSNRT SSIMT LPIPS* Traint VRAMY #Gs* [PSNRT SSIMT LPIPS* Train* VRAMY #Gst
3DGS [37] 2753 0.815 0256 18mdds 8.8GiB 2.74M| 23.77 0.852 0.204 11m26s 4.7GiB 1.57M| 29.81 0.907 0.305 19m43s 8.1GiB 2.47M
Speedy-Splatf[25] 27.53 0.816 0.255 17m32s 7.5GiB 2.72M| 23.77 0.852 0.205 10m34s 4.1GiB 1.57M| 29.79 0906 0.304 18m40s 7.1GiB 2.55M
StopThePop'[65] 27.54 0.816 0.255 16m46s 7.6GiB 2.73M| 23.76 0.852 0.205 9m5ls 4.1GiB 1.57M| 29.83 0.907 0.304 17m47s 7.1GiB 2.55M
Taming-3DGST[56] 27.53 0.815 0.256 10m49s 8.9GiB 2.73M| 23.78 0.852 0.203 7m04s 4.9GiB 1.57M| 29.81 0.906 0.305 9mOls 8.4GiB 2.47M
Basis Impl. [Ours] 27.57 0.816 0.255 15m57s 6.3GiB 2.67M| 23.79 0.853 0.204 9m39s JBEGIBY 1.52M| 29.74 0.907 0.304 17m15sJ60GiBY 2.52M
Ours 2756 0.816 0.254 [4m3180 6:1GiB12.73M| 23.75 0.853 0.204 [3m04s) 3.4GiB |1.55M| 29.78 0.906 0.304 [B3m46s" 6.0GiB 2.61M

Ours (full)
Tteration 5000

Ours (basis)
Iteration 5000

Tteration 500 Iteration 20000 Tteration 500 Tteration 20000

stage
Forward

Backward
Optimizer

Time (ms)

— Haﬁa Hﬁa

0

| [

o o 2 2 = o
P R R L AL A A I A AR R AT

Figure 2. Runtime comparison for the basis and full versions of
our optimized 3DGS framework. We measure the time it takes
to compute the forward/backward pass and the optimizer step
respectively during iteration 500, 5000, and 20000 when training
four scenes from the Mip-NeRF360 dataset [2].

seed due to the interaction between floating point math and
random ordering during gradient accumulation. For some
scenes, e.g., Bonsai from Mip-NeRF360 [2], this can lead to
a major difference of up to 0.5 dB PSNR in all implemen-
tations. Thus presented image quality metrics are averaged
across five runs. The main difference between methods is
in the training time and VRAM consumption, where our
implementation outperforms all baselines significantly, by
up to 5.2x compared to 3DGS [37] and 2.4x compared to
Taming-3DGS [56] on the Deep Blending scenes. Notably,
our basis implementation also achieves strong results.

Individual Components. Starting from our basis im-
plementation, we show the isolated performance impact of
all changes in Tab. 2. We report results for the indoor and
outdoor scenes of the Mip-NeRF360 [2] separately due to
different optimization behavior. Specifically, the number of
Gaussians created during densification are a lot higher for
outdoor scenes (3.8M vs. 1.3M Gaussians on average), while
indoor scenes use images with roughly 1.5x more pixels.

Particularly impressive speedups are obtained by using
any of the three fused Adam techniques, with our implemen-
tation consistently outperforming those from PyTorch and
apex. The per-Gaussian backward pass for alpha blending
also leads to a major speedup — especially when the num-
ber of primitives is small — but at the same time is the only
change that increases VRAM usage.

We also find that the load-balanced approach for creating
Gaussian/tile instances has an increasingly negative impact
on training speed as the number of primitives increases. Note
that full tile-based culling is also affected. When analyzing
this, we found the underlying issue to be warp divergence,
where more than half of the threads in each warp are inactive
because their Gaussian is invisible from the current view-
point. While load balancing is meant to address precisely
this issue, we find that the associated uncoalesced memory
accesses are a bigger bottleneck.

We can resolve this issue by sorting Gaussians in z-order
at regular intervals during training. While this works great
for scenes with many Gaussians, it significantly slows down
training when the number of Gaussians is small due to a
massive increase in atomic contention in the alpha blending
backward pass. Specifically, threads in different tiles are
more likely to write to the same cache line, which reduces
performance as operations are serialized and cache lines are
invalidated after every write (a.k.a. false sharing). Fortu-
nately, this is much less of an issue with the per-Gaussian
backward pass enabled in our full implementation, where
omitting our repeated z-ordering during densification slows
down training across all scene subsets.

In Fig. 2, we investigate the time spent per algorithm step
and find that computing parameter updates is a significant
fraction of the runtime. We evaluate approaches for decreas-
ing this bottleneck in Tab. 3. Fusing the optimizer with the
backward pass of the rasterizer (see Sec. 3.3) provides a
small speedup and VRAM reduction over our full version
but reduces its extensibility. After integration, parameter
updates remain the main bottleneck of training. Skipping
all parameter updates for invisible Gaussians [56] or omit-
ting view-dependent SH coefficients speeds up training and
reduces VRAM usage, but it also slightly degrades quality.

GPU Comparison. We investigate the advantages of our
improved 3DGS framework across different GPUs from the
three most recent consumer-grade generations of Nvidia
GPUs. As shown in Tab. 4, newer GPUs exhibit greater
speedup, suggesting anticipated performance improvements
in upcoming hardware generations. On an RTX 5090 GPU,
training takes 163 seconds on average, a 5x improvement
over the original implementation.

Table 2. Ablations on the Mip-NeRF360, Tanks and Temples, and Deep Blending datasets using an RTX 4090 GPU. Relative improvements
were computed before rounding and indicate the speedup/reduction in training time and peak VRAM usage respectively.

Mip-NeRF360

[2] - Outdoor

Mip-NeRF360 [2] - Indoor

Tanks and Temples [42]

Deep Blending [26]

Method Training* VRAM* Training* VRAM* Training* VRAM* Training* VRAMY
Basis 17m07s 6.39GiB 14m29s 6.23GiB 9m39s 3.43GiB 17m15s 6.04GiB
+ fused activations 16m19s (1.05x) 6.27GiB (0.98x) | 14m00s (1.03x) 6.19GiB (0.99x) | 9m19s (1.04x) 3.37GiB (0.98x) | 16m25s (1.05x) 5.94GiB (0.98x)

+ separate SH buffers

+ rectangular AABBs

+ rect. AABBs w/ opacity
+ load-balanced instancing
+ full tile-based culling

+ separate sorting

+ per-Gaussian backward
+ fused Adam (PyTorch)

15m39s (1.09x)
16m52s (1.02x)
16m46s (1.02x)
17m10s (1.00x)
16m53s (1.01x)
16m56s (1.01x)
14m14s (1.20x)
14m03s (1.22x)

5.72GiB (0.89x)
6.39GiB (1.00x)
6.38GiB (1.00x)
6.40GiB (1.00x)
6.39GiB (1.00x)
6.33GiB (0.99x)
7.69GiB (1.20x)
6.42GiB (1.00x)

14m10s (1.02x)
13m58s (1.04x%)
13m47s (1.05x)
14m22s (1.01x)
13m40s (1.06x)
14m05s (1.03x)

7m52s (1.84x%)
13m40s (1.06x)

5.99GiB (0.96x)
6.16GiB (0.99x)
6.12GiB (0.98x)
6.23GiB (1.00x)
6.11GiB (0.98x)
6.12GiB (0.98x)
7.84GiB (1.26x)
6.23GiB (1.00x)

9m13s (1.05x%)
9m17s (1.04x)
9m13s (1.05%)
9m35s (1.01x)
9m11s (1.05%)
9m34s (1.01x)
6m56s (1.39x)
8md0s (1.11x)

3.13GiB (0.91x)
3.38GiB (0.99%)
3.36GiB (0.98x)
3.42GiB (1.00x)
3.35GiB (0.98%)
3.36GiB (0.98%)
4.49GiB (1.31x)
3.42GiB (1.00x)

16m31s (1.04x)
16m44s (1.03x)
16m44s (1.03x)
17m07s (1.01x)
16m43s (1.03x)
16m58s (1.02x)
10m27s (1.65x)
15m22s (1.12x)

5.57GiB (0.92x)
5.97GiB (0.99%)
5.92GiB (0.98x)
6.04GiB (1.00x)
5.89GiB (0.97x)
5.90GiB (0.98x)
8.36GiB (1.38x)
6.05GiB (1.00x)

+ fused Adam (Apex) 13m12s (1.30x) 6.41GiB (1.00x) | 12m59s (1.12x) 6.22GiB (1.00x) | 8m02s (1.20x) 3.42GiB (1.00x) | 14m38s (1.18x) 6.04GiB (1.00x)
+ fused Adam (Ours) 12m50s (1.33x) 6.40GiB (1.00x) | 12m55s (1.12x) 6.23GiB (1.00x) | 7m55s (1.22x) 3.42GiB (1.00x) | 14m32s (1.19x) 6.04GiB (1.00x)
Full w/o z-ordering 5m52s (2.92x) 5.99GiB (0.94x) | 3ml7s (4.41x) 6.25GiB (1.00x) | 3m11s (3.02x) 3.36GiB (0.98x) | 3m50s (4.50x) 5.95GiB (0.98x)
Full 5m31s (3.10x) 5.99GiB (0.94x) | 3mlds (4.47x) 6.29GiB (1.01x) | 3m04s (3.14x) 3.39GiB (0.99x) | 3md6s (4.58x) 5.96GiB (0.99x)

Table 3. Integrating the optimizer step into the backward pass
results in a minor speed enhancement. Avoiding updates for non-
visible Gaussians or excluding view-dependent spherical harmonics
(SH) affects quality. Results are averaged over the five outdoor
scenes from the Mip-NeRF360 dataset [2].

PSNRT Traint VRAM' #Gst

Full 2472 5m3ls 6.0GiB 3.87TM
+ fused updates 2473 5m04s 5.6GiB 3.89M
+ fused updates (skip invisible) 24.59 3m03s 5.1GiB 3.34M
+ fused updates (SH degree=0) 24.38 2m24s 3.2GiB 3.85M

Table 4. Training time across all 13 scenes with different GPUs.

RTX 3090 RTX 4090 RTX 5090
3DGS [37] 23m46s 17m46s 13m05s
Ours (Full) 6mO03s (3.9x) 4m10s (4.3x) 2m43s (4.8x)

Table 5. Comparison with the reference implementation [93] for our
extension to 4D Gaussians on the synthetic D-NeRF dataset [64].

Traint ~ VRAM} #Gst

18m09s 1.9GiB 0.83M
6m22s (2.8x) 1.2GiB 0.79M

PSNRT SSIMT LPIPST

Yang et al. [93] 31.52 0.960 0.051
Ours 31.79 0.960 0.051

4.3. Dynamic Scenes

To evaluate our extension to 4D reconstruction (see Sec. 3.4),
we compare our implementation against the reference imple-
mentation by Yang et al. [93] on the eight synthetic scenes
from the D-NeRF [64] dataset. All scenes are trained and
evaluated at the native dataset resolution of 800x800 pixels
using the provided train/test splits. Note that we use one con-
sistent set of hyperparameters across all scenes: We initialize
with 100K random points, use the standard view-dependent
color parametrization from 3DGS (SH up to degree three),
and train for 30000 iterations with a batch size of four. The
results in Tab. 5 show that our speedup for standard 3DGS
translates to the dynamic scene reconstruction setting as our

improved implementation trains up to 3x faster while us-
ing less VRAM and maintaining quality. See Sec. C.5 for
additional quantitative comparisons on real-world data.

5. Discussion, Limitations, and Future Work

Our optimized framework significantly accelerates Gaussian
Splatting and we find that the remaining bottlenecks are tied
to the computation of parameter updates. This motivates the
integration of second-order optimization algorithms [34, 45]
or more compact view-dependent appearance representa-
tions [94], which we leave as future work. We also high-
light that further optimizations, e.g., fusing the forward and
backward passes [63] or mixed precision training [60], are
possible but will come with a tradeoff between simplicity,
robustness, and optimal performance. While not within the
scope of our work, we present results for integrating state-
of-the-art anti-aliasing and densification techniques [39, 98]
as well as an inference-optimized rasterizer implementation
based on our testbed to facilitate this process (see Secs. C.1
to C.3). Furthermore, our evaluation sets aside valuable train-
ing improvements w.r.t. to artifacts [65], controllability [56],
and informed pruning techniques [25] that could be added
in the future.

6. Conclusion

In this paper, we surveyed recent 3DGS follow-up works
for performance improvements and systematically evaluated
their effectiveness. We further integrate memory-efficient
adaptations to arrive at a new, optimized Gaussian Splat-
ting framework, Faster-GS, that trains 3D and 4D Gaussian
scenes up to 5x faster than prior work. Furthermore, we
reduce VRAM requirements by up to 30%, making our
approach especially cost-effective and feasible to use on
lower-end hardware. Ultimately, our framework enables full
3DGS reconstruction in less than two minutes. With its code
release, we hope to significantly accelerate future Gaussian
Splatting-based view synthesis research.

Acknowledgments

This work was partially funded by the DFG projects
“Real-Action VR” (ID 523421583) and “Increasing

Realism of Omnidirectional Videos
ity” (ID 491805996).

in Virtual Real-
Linus Franke was supported by

the ERC Advanced Grant NERPHYS (ID 101141721).

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

Milena T. Bagdasarian, Paul Knoll, Yi-Hsin Li, Florian
Barthel, Anna Hilsmann, Peter Eisert, and Wieland Mor-
genstern. 3DGS.zip: A survey on 3D Gaussian splatting
compression methods. CGF, 44(2), 2025. 1, 3,4

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-NeRF 360: Unbounded
anti-aliased neural radiance fields. In CVPR, pages 5460-
5469, 2022. 6,7, 8, 15, 16, 17

Hugo Blanc, Jean-Emmanuel Deschaud, and Alexis Paljic.
RayGauss: Volumetric Gaussian-based ray casting for pho-
torealistic novel view synthesis. In WACV, 2025. 3

Hugo Blanc, Jean-Emmanuel Deschaud, and Alexis Paljic.
RayGaussX: Accelerating Gaussian-based ray marching for
real-time and high-quality novel view synthesis. In ICCV,
2025.

Adam Celarek, Georgios Kopanas, George Drettakis,
Michael Wimmer, and Bernhard Kerbl. Does 3d gaussian
splatting need accurate volumetric rendering? CGF, 44(2),
2025. 3

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and
Vincent Sitzmann. PixelSplat: 3D Gaussian splats from
image pairs for scalable generalizable 3D reconstruction. In
CVPR, pages 19457-19467, 2024. 2, 3

Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie,
Shangjin Zhai, Nan Wang, Haomin Liu, Hujun Bao, and
Guofeng Zhang. PGSR: Planar-based Gaussian splatting
for efficient and high-fidelity surface reconstruction. /IEEE
TVCG, 31(9):6100-6111, 2025. 4

Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xi-
aofeng Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huap-
ing Liu, and Guosheng Lin. GaussianEditor: Swift and
controllable 3D editing with Gaussian splatting. In CVPR,
pages 21476-21485, 2024. 4

Youyu Chen, Junjun Jiang, Kui Jiang, Xiao Tang, Zhihao Li,
Xianming Liu, and Yinyu Nie. Dashgaussian: Optimizing
3d gaussian splatting in 200 seconds. In CVPR, 2025. 3
Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang,
Marc Pollefeys, Andreas Geiger, Tat-Jen Cham, and Jianfei
Cai. MVSplat: Efficient 3D Gaussian splatting from sparse
multi-view images. In ECCV, pages 370-386, 2025. 3
Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee.
Depth-regularized optimization for 3D Gaussian splatting in
few-shot images. In CVPRW, 2024. 3

Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic,
Simon Green, Piotr Didyk, and Adrian Jarabo. Don’t splat
your Gaussians: Volumetric ray-traced primitives for mod-
eling and rendering scattering and emissive media. ACM
TOG, 44(1), 2025. 3

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan Liang,
Pawan Kumar Sanjaya, and Nandita Vijaykumar. Dist-
war: Fast differentiable rendering on raster-based rendering
pipelines, 2023. 5

Guangchi Fang and Bing Wang. Mini-Splatting: Repre-
senting scenes with a constrained number of Gaussians. In
ECCV, pages 165-181, 2024. 3,4

Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang,
Tao Liu, Boni Hu, Lining Xu, Zhilin Pei, Hengjie Li, Xi-
uhong Li, Ninghui Sun, Xingcheng Zhang, and Bo Dai.
FlashGS: Efficient 3D Gaussian splatting for large-scale and
high-resolution rendering. In CVPR, pages 26652-26662,
2025.1,2,3

Linus Franke, Darius Riickert, Laura Fink, and Marc Stam-
minger. TRIPS: Trilinear point splatting for real-time radi-
ance field rendering. CGF, 43(2), 2024. 4

Linus Franke, Laura Fink, and Marc Stamminger. VR-
Splatting: Foveated radiance field rendering via 3D Gaussian
splatting and neural points. PACMCGIT, 8(1), 2025. 2, 3
Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. EA-
GLES: Efficient accelerated 3D Gaussians with lightweight
encodings. In ECCV, pages 54-71, 2024. 3, 4

Glenn Grubert, Florian Barthel, Anna Hilsmann, and Peter
Eisert. Improving adaptive density control for 3d gaussian
splatting. In VISIGRAPP, 2025. 3

Antoine Guédon and Vincent Lepetit. SuGaR: Surface-
aligned gaussian splatting for efficient 3d mesh reconstruc-
tion and high-quality mesh rendering. In CVPR, pages 5354—
5363, 2024. 4

Hao Gui, Lin Hu, Rui Chen, Mingxiao Huang, Yuxin Yin,
Jin Yang, Yong Wu, Chen Liu, Zhongxu Sun, Xueyang
Zhang, et al. Balanced 3DGS: Gaussian-wise parallelism
rendering with fine-grained tiling, 2024. 3

Antoine Guédon, Diego Gomez, Nissim Maruani, Bingchen
Gong, George Drettakis, and Maks Ovsjanikov. MILo:
Mesh-in-the-loop Gaussian splatting for detailed and effi-
cient surface reconstruction. ACM TOG, 2025. 4

Florian Hahlbohm, Linus Franke, Leon Overkdmping, Paula
Wespe, Susana Castillo, Martin Eisemann, and Marcus Mag-
nor. A bag of tricks for efficient implicit neural point clouds.
In VMV, 2025. 18

Florian Hahlbohm, Fabian Friederichs, Tim Weyrich, Linus
Franke, Moritz Kappel, Susana Castillo, Marc Stamminger,
Martin Eisemann, and Marcus Magnor. Efficient perspective-
correct 3D Gaussian splatting using hybrid transparency.
CGF, 44(2),2025. 1,2,3,5, 15

Alex Hanson, Allen Tu, Geng Lin, Vasu Singla, Matthias
Zwicker, and Tom Goldstein. Speedy-Splat: Fast 3D Gaus-
sian splatting with sparse pixels and sparse primitives. In
CVPR, pages 21537-21546,2025. 1,2,3,4,5,6,7, 8
Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM TOG, 37(6),
2018. 6,7, 8, 15

Jan Held, Renaud Vandeghen, Adrien Deliege, Abdul-
lah Hamdi, Anthony Cioppa, Silvio Giancola, Andrea
Vedaldi, Bernard Ghanem, Andrea Tagliasacchi, and Marc

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

[41]

Van Droogenbroeck. Triangle splatting for real-time radi-
ance field rendering, 2025. 4

Jan Held, Renaud Vandeghen, Abdullah Hamdi, Adrien
Deliege, Anthony Cioppa, Silvio Giancola, Andrea Vedaldi,
Bernard Ghanem, and Marc Van Droogenbroeck. 3D con-
vex splatting: Radiance field rendering with 3D smooth
convexes. In CVPR, pages 21360-21369, 2025. 4

Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben van
Werkhoven, and Henri E. Bal. Optimization techniques
for gpu programming. ACM Comput. Surv., 55(11), 2023. 4
Qiqgi Hou, Randall Rauwendaal, Zifeng Li, Hoang Le,
Farzad Farhadzadeh, Fatih Porikli, Alexei Bourd, and Amir
Said. Sort-free Gaussian splatting via weighted sum render-
ing. In ICLR, 2025. 3

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2D Gaussian splatting for geometrically
accurate radiance fields. In SIGGRAPH, 2024. 2, 4

Junkai Huang, Saswat Subhajyoti Mallick, Alejandro Amat,
Marc Ruiz Olle, Albert Mosella-Montoro, Bernhard Kerbl,
Francisco Vicente Carrasco, and Fernando De la Torre.
Echoes of the coliseum: Towards 3d live streaming of sports
events. ACM TOG, 44(4), 2025. 4

Letian Huang, Jiayang Bai, Jie Guo, Yuanqi Li, and Yanwen
Guo. On the error analysis of 3D Gaussian splatting and an
optimal projection strategy. In ECCV, pages 247-263, 2024.
3

Lukas Hollein, Aljaz Bozi¢, Michael Zollhofer, and Matthias
NieBner. 3DGS-LM: Faster Gaussian-splatting optimization
with Levenberg-Marquardt. In /CCV, 2025. 3, 8

Lihan Jiang, Yucheng Mao, Linning Xu, Tao Lu, Kerui Ren,
Yichen Jin, Xudong Xu, Mulin Yu, Jiangmiao Pang, Feng
Zhao, Dahua Lin, and Bo Dai. AnySplat: Feed-forward 3D
Gaussian splatting from unconstrained views. ACM TOG,
44(6), 2025. 2,3

Moritz Kappel, Florian Hahlbohm, and Timon Scholz. NeR-
FICG, 2026. 13

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler,
and George Drettakis. 3D Gaussian splatting for real-time
radiance field rendering. ACM TOG, 42(4), 2023. 1,2, 3, 4,
6,7,8,12,13,15,17

Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas,
Michael Wimmer, Alexandre Lanvin, and George Drettakis.
A hierarchical 3D Gaussian representation for real-time ren-
dering of very large datasets. ACM TOG, 43(4), 2024. 1,
4

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Wei-
wei Sun, Yang-Che Tseng, Hossam Isack, Abhishek Kar,
Andrea Tagliasacchi, and Kwang Moo Yi. 3D Gaussian
splatting as Markov chain Monte Carlo. In NeurlPS, 2024.
1,3,8,17

Shakiba Kheradmand, Delio Vicini, George Kopanas,
Dmitry Lagun, Kwang Moo Yi, Mark Matthews, and Andrea
Tagliasacchi. StochasticSplats: Stochastic rasterization for
sorting-free 3D Gaussian splatting. In ICCV, 2025. 3
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 3, 12

10

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and Temples: Benchmarking large-scale
scene reconstruction. ACM TOG, 36(4), 2017. 6,7, 8, 15
Dmytro Kotovenko, Olga Grebenkova, and Bjorn Ommer.
EDGS: Eliminating densification for efficient convergence
of 3DGS, 2025. 2,3

Jonas Kulhanek, Marie-Julie Rakotosaona, Fabian Manhardt,
Christina Tsalicoglou, Michael Niemeyer, Torsten Sattler,
Songyou Peng, and Federico Tombari. LODGE: Level-of-
detail large-scale Gaussian splatting with efficient rendering.
In NeurIPS, 2025. 4

Lei Lan, Tianjia Shao, Zixuan Lu, Yu Zhang, Chenfanfu
Jiang, and Yin Yang. 3DGS2: Near second-order converging
3D Gaussian splatting. In SIGGRAPH, 2025. 3, 8

Sixu Li, Ben Keller, Yingyan (Celine) Lin, and Brucek
Khailany. GauRast: Enhancing gpu triangle rasterizers to
accelerate 3D Gaussian splatting. In DAC, 2025. 2, 3
Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
and Zhaoyang Lv. Neural 3D video synthesis from multi-
view video. In CVPR, pages 5511-5521, 2022. 18

Zimu Liao, Jifeng Ding, Siwei Cui, Ruixuan Gong, Boni
Hu, Yi Wang, Hengjie Li, Hui Wang, Xingcheng Zhang,
and Rong Fu. TC-GS: A faster Gaussian splatting module
utilizing tensor cores. In SIGGRAPH Asia, 2025. 1,2, 3
Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong
Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu, Songcen Xu, You-
liang Yan, and Wenming Yang. VastGaussian: Vast 3D
Gaussians for large scene reconstruction. In CVPR, 2024. 3
Rong Liu, Dylan Sun, Meida Chen, Yue Wang, and Andrew
Feng. Deformable beta splatting. In SIGGRAPH, 2025. 4
Xian Liu, Xiaohang Zhan, Jiaxiang Tang, Ying Shan, Gang
Zeng, Dahua Lin, Xihui Liu, and Ziwei Liu. Humangaussian:
Text-driven 3d human generation with gaussian splatting. In
CVPR, pages 6646-6657, 2024. 1

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin
Wang, Dahua Lin, and Bo Dai. Scaffold-GS: Structured 3D
Gaussians for view-adaptive rendering. In CVPR, 2024. 3
Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3D Gaussians: Tracking by persis-
tent dynamic view synthesis. In 3DV, pages 800-809, 2024.
4

Zhaofeng Luo, Zhitong Cui, Shijian Luo, Mengyu Chu, and
Minchen Li. VR-Doh: Hands-on 3D modeling in virtual
reality. ACM TOG, 44(4), 2025. 4

Alexander Mai, Peter Hedman, George Kopanas, Dor Verbin,
David Futschik, Qiangeng Xu, Falko Kuester, Jonathan T.
Barron, and Yinda Zhang. EVER: Exact volumetric ellipsoid
rendering for real-time view synthesis. arXiv:2410.01804,
2024. 4

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl,
Markus Steinberger, Francisco Vicente Carrasco, and Fer-
nando De La Torre. Taming 3DGS: High-quality radiance
fields with limited resources. In SIGGRAPH Asia, 2024. 1,
2,3,5,6,7,8,13, 14, 16, 17

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and An-
drew J Davison. Gaussian splatting slam. In CVPR, pages
18039-18048, 2024. 1

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, pages 405-421, 2020. 1

Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Ric-
cardo de Lutio, Janick Martinez Esturo, Gavriel State, Sanja
Fidler, Nicholas Sharp, and Zan Gojcic. 3D Gaussian Ray
Tracing: Fast tracing of particle scenes. ACM TOG, 43(6),
2024. 3

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM TOG, 41(4), 2022. 8
Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakoto-
saona, Michael Oechsle, Daniel Duckworth, Rama Gosula,
Keisuke Tateno, John Bates, Dominik Kaeser, and Federico
Tombari. RadSplat: Radiance field-informed Gaussian splat-
ting for robust real-time rendering with 900+ fps. In 3DV,
pages 134-144, 2025. 3

Julien Philip, Li Ma, Pascal Clausen, Wenqi Xian, Ah-
met Levent Tagel, Mingming He, Xueming Yu, David M.
George, Ning Yu, Oliver Pilarski, and Paul Debevec. De-
tail enhanced gaussian splatting for large-scale volumetric
capture. In SIGGRAPH Asia, 2025. 1

Yohan Poirier-Ginter, Jeffrey Hu, Jean-Frangois Lalonde,
and George Drettakis. Editable physically-based reflections
in raytraced gaussian radiance fields. In SIGGRAPH Asia,
2025. 8

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural radiance fields
for dynamic scenes. In CVPR, pages 10313-10322, 2021. 8
Lukas Radl, Michael Steiner, Mathias Parger, Alexan-
der Weinrauch, Bernhard Kerbl, and Markus Steinberger.
StopThePop: Sorted Gaussian splatting for view-consistent
real-time rendering. ACM TOG, 43(4),2024. 1,2, 3,4,5,6,
7,8, 16

Lukas Radl, Felix Windisch, Thomas Deixelberger, Jozef
Hladky, Michael Steiner, Dieter Schmalstieg, and Markus
Steinberger. SOF: Sorted opacity fields for fast unbounded
surface reconstruction, 2025. 4

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu,
Zhangkai Ni, and Bo Dai. Octree-GS: Towards consis-
tent real-time rendering with LOD-structured 3D Gaussians.
IEEE TPAMI, 2025. 4

Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder.
Revising densification in Gaussian splatting. In ECCV, pages
347-362,2024. 1,3

Darius Riickert, Linus Franke, and Marc Stamminger.
ADOP: Approximate differentiable one-pixel point render-
ing. ACM TOG, 41(4), 2022. 4

Sara Sabour, Lily Goli, George Kopanas, Mark Matthews,
Dmitry Lagun, Leonidas Guibas, Alec Jacobson, David
Fleet, and Andrea Tagliasacchi. SpotLessSplats: Ignoring
distractors in 3D Gaussian splatting. ACM TOG, 44(2), 2025.
3,6

11

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

(82]

[83]

[84]

(85]

[86]

Markus Schiitz, Bernhard Kerbl, and Michael Wimmer. Soft-
ware rasterization of 2 billion points in real time. PACM-
CGIT, 5(3), 2022. 4

Markus Schiitz, Bernhard Kerbl, and Michael Wimmer. Ren-
dering point clouds with compute shaders and vertex order
optimization. CGF, 40(4):115-126, 2021. 5

Markus Schiitz, Christoph Peters, Florian Hahlbohm, Elmar
Eisemann, Marcus Magnor, and Michael Wimmer. Splat-
shop: Efficiently editing large Gaussian splat models. CGF,
2025. 1,2,3,4,5, 14

Michael Steiner, Thomas Kohler, Lukas Radl, Felix
Windisch, Dieter Schmalstieg, and Markus Steinberger.
AAA-Gaussians: Anti-aliased and artifact-free 3D Gaus-
sian rendering. In ICCV, pages 27650-27659, 2025. 3, 15,
17

LichtFeld Studio. A high-performance c++ and cuda imple-
mentation of 3d gaussian splatting, 2025. 4

Stanislaw Szymanowicz, Christian Rupprecht, and Andrea
Vedaldi. Splatter Image: Ultra-fast single-view 3D recon-
struction. In CVPR, pages 10208-10217, 2024. 3
Chinmay Talegaonkar, Yash Belhe, Ravi Ramamoorthi, and
Nicholas Antipa. Volumetrically consistent 3D Gaussian
rasterization. In CVPR, 2025. 3

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang,
Gang Zeng, and Ziwei Liu. LGM: Large multi-view Gaus-
sian model for high-resolution 3D content creation. In
ECCV, pages 1-18,2024. 3

Fabio Tosi, Youmin Zhang, Ziren Gong, Erik Sandstrom,
Stefano Mattoccia, Martin R Oswald, and Matteo Poggi.
How nerfs and 3d gaussian splatting are reshaping slam: a
survey. arXiv preprint arXiv:2402.13255, 4:1, 2024. 1
Xuechang Tu, Lukas Radl, Michael Steiner, Markus Stein-
berger, Bernhard Kerbl, and Fernando de la Torre. VRSplat:
Fast and robust Gaussian splatting for virtual reality. PACM-
CGIT, 8(1), 2025. 3

Nicolas von Liitzow and Matthias NieBner. LinPrim:
Linear primitives for differentiable volumetric rendering.
arXiv:2501.16312,2025. 4

Xinzhe Wang, Ran Yi, and Lizhuang Ma. AdR-Gaussian:
Accelerating Gaussian splatting with adaptive radius. In
SIGGRAPH Asia, 2024. 2, 3, 4

Yifan Wang, Peishan Yang, Zhen Xu, Jiaming Sun, Zhanhua
Zhang, Yong Chen, Hujun Bao, Sida Peng, and Xiaowei
Zhou. FreeTimeGS: Free Gaussian primitives at anytime
anywhere for dynamic scene reconstruction. In CVPR, pages
21750-21760, 2025. 4

Felix Windisch, Thomas Kohler, Lukas Radl, Michael
Steiner, Dieter Schmalstieg, and Markus Steinberger. A
LoD of Gaussians: Unified training and rendering for ultra-
large scale reconstruction with external memory, 2025. 4
Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4D Gaussian splatting for real-time dynamic scene rendering.
In CVPR, pages 20310-20320, 2024. 4

Qi Wu, Janick Martinez Esturo, Ashkan Mirzaei, Nicolas
Moenne-Loccoz, and Zan Gojcic. 3DGUT: Enabling dis-
torted cameras and secondary rays in Gaussian splatting. In
CVPR, pages 26036-26046, 2025. 2, 3

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng
Wang, Bowen Zhang, Dong Chen, Xin Tong, and Jiaolong
Yang. Structured 3d latents for scalable and versatile 3d
generation. In CVPR, pages 21469-21480, 2025. 1

Haofei Xu, Songyou Peng, Fangjinhua Wang, Hermann
Blum, Daniel Barath, Andreas Geiger, and Marc Pollefeys.
DepthSplat: Connecting Gaussian splatting and depth. In
CVPR, pages 16453-16463, 2025. 3

Zhen Xu, Yinghao Xu, Zhiyuan Yu, Sida Peng, Jiaming
Sun, Hujun Bao, and Xiaowei Zhou. Representing long
volumetric video with temporal Gaussian hierarchy. ACM
TOG, 43(6), 2024. 4

Mengtian Yang, Yipeng Wang, Chieh-Pu Lo, Xiuhao Zhang,
Sirish Oruganti, and Jaydeep P. Kulkarni. GSAcc: Ac-
celerate 3D Gaussian splatting via depth speculation and
gaussian-centric rasterization. In DAC, 2025. 3

Xijie Yang, Linning Xu, Lihan Jiang, Dahua Lin, and Bo Dai.
Virtualized 3D Gaussians: Flexible cluster-based level-of-
detail system for real-time rendering of composed scenes. In
SIGGRAPH. Association for Computing Machinery, 2025.
4

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3D Gaussians for
high-fidelity monocular dynamic scene reconstruction. In
CVPR, 2024. 4

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-
time photorealistic dynamic scene representation and ren-
dering with 4D Gaussian splatting. In ICLR, 2024. 2, 4, 6,
8, 18

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,
and Ben Mildenhall. BakedSDF: Meshing neural SDFs for
real-time view synthesis. In SIGGRAPH, 2023. 8

Keyang Ye, Tianjia Shao, and Kun Zhou. When Gaussian
meets surfel: Ultra-fast high-fidelity radiance field rendering.
ACM TOG, 44(4), 2025. 4

Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen,
Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey
Hu, Matthew Tancik, and Angjoo Kanazawa. gsplat: An
open-source library for gaussian splatting. Journal of Ma-
chine Learning Research, 26(34):1-17, 2025. 2, 4

Zongxin Ye, Wenyu Li, Sidun Liu, Peng Qiao, and Yong
Dou. AbsGS: Recovering fine details for 3D Gaussian splat-
ting, 2024. 3

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-Splatting: Alias-free 3D Gaussian
splatting. In CVPR, pages 19447-19456, 2024. 1, 3, 8, 15,
16, 17

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
Opacity Fields: Efficient adaptive surface reconstruction in
unbounded scenes. ACM TOG, 43(6), 2024. 3, 4

Baowen Zhang, Chuan Fang, Rakesh Shrestha, Yixun Liang,
Xiaoxiao Long, and Ping Tan. RaDe-GS: Rasterizing depth
in Gaussian splatting, 2024. 4

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In CVPR, pages
586-595,2018. 6

12

[102] Brent Zoomers, Maarten Wijnants, Ivan Molenaers, Joni
Vanherck, Jeroen Put, Lode Jorissen, and Nick Michiels.
PRoGS: Progressive rendering of Gaussian splats. In WACV,
2025. 3

[103] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus Gross. EWA volume splatting. In Proc. of the
Conference on Visualization, pages 29-36, 2001. 1,2

A. 3DGS Training Details

To complement our brief summary of the 3DGS training
schedule (Sec. 2.1), we supplement the remaining details
and all relevant hyperparameter values in the following. Note
that the specified hyperparameters precisely reflect the opti-
mization schedule of the original implementation by Kerbl ef
al. [37]. Recall that to reconstruct a scene from a set of
training images, 3DGS first initializes Gaussians at random
positions or based on an input point cloud. As this initial
point cloud is often very sparse, Kerbl et al. [37] introduce
adaptive density control (ADC), a set of carefully tuned
heuristics for cloning, splitting, and pruning Gaussians dur-
ing optimization. Specifically, 3DGS tracks the magnitude
of the uop gradients during training for all Gaussians. At reg-
ular intervals, Gaussians for with the average magnitude of
this gradient exceeds a predefined threshold are selected for
densification. Of the selected Gaussians, large ones are each
split into two new, smaller Gaussians with new positions
being sampled from the respective parent Gaussian distri-
butions, while those that are small are simply duplicated
in place. Additionally, Gaussians that either have a very
low opacity or are too large w.r.t. scene size are removed.
Densification starts after a warm-up period of 600 iterations
and is repeated every 100 iterations thereafter. Gaussians are
split/cloned when their average positional gradient across
all iterations where they were visible (i.e., inside the viewing
frustum) since the previous densification step exceeds 2e—4,
and pruned when their opacity is below 0.05. After the final
densification step in iteration 14900, Gaussians are no longer
added or removed from the model.

To further encourage pruning of floaters and incorrectly
placed Gaussians, 3DGS resets the opacity of all Gaussians
to a small value multiple times during the optimization. The
opacity reset is performed every 3000 iterations while den-
sification is active, i.e., four times in total and clips opacity
values to 0.01 from above.

For the loss function, 3DGS uses a weighted combina-
tion of L1 and D-SSIM (i.e. 1 — SSIM) terms, with weights
being 0.8 and 0.2 respectively. Parameter updates are then
performed using the ADAM optimizer [41] with 5; =0.9,
B2 = 0.999, and € = le —15. Learning rates are set to
0.005, 0.001, and 0.025 for scale, rotation, and opacity re-
spectively. We again highlight an important change that has
been integrated into the official 3DGS codebase of Kerbl et
al. [37] since the initial release is a change in the opacity

learning rate, which was halved from 0.05 to 0.025 follow-
ing Mallick et al. [56]. As stated in the main paper, this
change affects how many Gaussians are created during opti-
mization with the new, lower learning rate leading to slightly
cleaner reconstructions with fewer Gaussians. For the Gaus-
sian means, the learning rate is exponentially decayed from
1.6e—4 to 1.6e—6 during optimization and scaled by an ad-
ditional constant factor that depends on the size of the scene
to be reconstructed. For the three view-independent compo-
nents of the SH coefficients a learning rate of 2.5e—3 is used,
while remaining components use 1.25e—4. To prevent 3DGS
from fitting diffuse color information with view-dependent
SH coefficients, only the 0™ degree is used at the start of
training and the next higher degree being enabled every 1000
iterations.

B. Implementation Details

In this section, we provide a detailed description of our refac-
tored 3DGS implementation that is the basis of our testbed
as well details of our implementation for the improvements
proposed in prior works (cf. Sec. 3.2).

B.1. Testbed Basis

As our goal is to investigate the effectiveness of recently
proposed optimizations for the original implementation by
Kerbl et al. [37], we first start off by creating a clean, refac-
tored 3DGS implementation as the basis for our testbed.
To avoid developing routines for data loading/management,
logging, interactive viewing, and other functionalities com-
monly required for novel-view synthesis methods, we build
our implementation on top on the NeRFICG framework [36].
A key advantage of it is that our Faster-GS implementation
retains modularity, simplifying future integration into other
codebases. Similar to Kerbl ef al. [37], we use a PyTorch
implementation with custom C++/CUDA extensions for fre-
quently executed operations to ensure optimal performance.

The most important of these extensions is the differen-
tiable software rasterizer for 3D Gaussians. Our implemen-
tation is based on the original 3DGS, but features a complete
rewrite of all CUDA kernels that includes various suitable
simplifications and multiple small optimizations. One of
these simplifications involves removing the reliance on the
OpenGL projection matrix where we instead use the intrinsic
camera parameters directly (see Egs. (1) and (2)). This not
only simplifies the math but also allows for properly render-
ing images with a non-centered optical center. An arguably
more significant change is that we compute the gradients
of the alpha blending (see Eq. (4)) in front-to-back order.
The original implementation does this in back-to-front order,
which arguably makes the kernel code much more difficult
to read. More importantly, however, back-to-front order re-
quires additional workarounds to ensure numerically stable
gradient computation. To this end, Kerbl et al. first limit

13

the maximum opacity a fragment can have when computing
Eq. (3) by computing & = min(0.99, «), which ensures that
repeated division by (1 — ;) when computing the previous
transmittance in the backward pass is stable. For similar rea-
sons, they use a somewhat unconventional approach for stop-
ping the computation of Eq. (4) early once the transmittance
falls below a threshold 7 = le—4. Instead of first blending
the fragment and checking whether to stop afterward, they
first check whether the transmittance would be below 7 if
the fragment was to be blended and skip it if that check
returns true. In combination these fixes ensure numerical
stability but arguably also create counterintuitive behavior
in certain edge cases. With our implementation using front-
to-back order to compute the alpha blending gradients, we
can get stable gradients without these workarounds. In a
similar spirit, we also employ a more direct approach for
handling degenerate 3D Gaussians created by the parameter
updates during training. Specifically, a Gaussian in 3DGS
is non-degenerate, if and only if its quaternion ¢ as well as
all three of its scales are non-zero. To obtain numerically
stable gradients in single precision, these values must also
not be too small. Therefore, we do not render a Gaussian
when ||g|| < 1le—4 or |X;p| < 1e—6. Note that as the former
of these conditions is not view-dependent, we add it as an
additional pruning condition during densification.

We also apply multiple small optimizations to the
PyTorch-based frontend of our 3DGS framework. First,
we replace the implicit approach Kerbl ef al. use to make
the rasterizer return the pp gradients and visibility masks
required as the metrics for densification by passing a persis-
tent buffer storing these values to the rasterizer and mark-
ing it as non-differentiable. This is slightly faster, requires
less VRAM, and arguably much cleaner in general. We
also investigate VRAM fragmentation issues originating to
frequent changes in buffer sizes during densification. We
find that, even when the maximum number of Gaussians is
known before optimization, it will never be possible fully
avoid these issues due to the number of tile instances being
view- and optimization-dependent. Fortunately, recent Py-
Torch versions support expandable memory segments, which
enables lower and more predictable VRAM consumption
during training.

Next, we revisit the implementation of the cloning, split-
ting, and pruning routines used for densification. We find
that the original implementation copies the Gaussians’ pa-
rameters much more often than needed, which we avoid to
eliminate unnecessary overhead. Somewhat surprisingly, we
also found that the official 3DGS implementation by Kerbl et
al. actually only performs 29855 optimizer steps with non-
zero gradients because the densification routines zero out all
gradients. We fix this in our implementation by performing
the optimizer step right after the backward pass. While this
means ours implementation performs 145 additional opti-

mizer steps, it only makes a small difference in terms of
runtime as the number of calls to the forward and backward
passes of the rasterizer are not affected by this.

Lastly, we find that after a recent update the official 3DGS
codebase clips the colors of the rendered images to the [0, 1]
range during training. While the rendered colors can, due to
the activation function applied to ¢, never take on negative
values, values be larger than one are possible. However, as
clipping sets the gradient to zero, pixels with a final color
marginally above one would not be used for optimization. As
this may cause unexpected behavior when the input images
contain many white pixels due to, e.g., white walls or sky,
we stick to the original approach of only clipping during
inference.

B.2. Separate Sorting

As detailed in Sec. 3.2, we follow Schiitz et al. [73] and sep-
arate the sorting step for obtaining depth-sorted per-tile splat
lists into two sorting routines, which has two key advantages.
First, we no longer need a 64-bit data type to store the keys
for sorting leading to reduced VRAM usage. The reason for
this is that the first sort can use 32-bit keys for depth sorting
while the second sort can use 16-bit (or 32-bit keys for very
high image resolutions) for the tile sorting. This is possible
because the tiled rendering approach with 16x16 pixel tiles
makes it so for images up to a resolution of 216 - 256, i.e.
roughly 16 megapixels, tile indices fit into a 16-bit unsigned
integer. Note that this limit is slightly lower when image
dimensions are not a multiple of 16. The second advantage
is in the complexity of the sorting, which for radix sort is
O(kn) with k being the number of bits in the sorting key.
In the original 3DGS implementation, sorting is performed
on a large buffer with 64-bit keys where each Gaussian can
contribute an arbitrary amount of entries depending on the
number of tiles it contributes to. Importantly, the depth value
in the lower 32 bits of the key is the same for all entries from
the same Gaussian, while the tile index in the higher 32 bits
will be different. Assuming each of our n Gaussians is visi-
ble in an average of 8 tiles, the complexity of the combined
radix sort is O(8 - (16 + 32)n) = O(384n) Note that we
assume a key size of 48 bits as the radix sort implementation
used by Kerbl et al. supports accounting for the fact that not
all of the higher 32 bits are needed to store the tile indices
(usually 16 bits suffice) and can therefore be disregarded dur-
ing sorting. When separating the sorting, the complexities of
the two steps become O(32n) and O(8 - 16n) respectively,
i.e. the combined complexity is O(32n) + O(128n). This
clearly shows the advantage of using the separate sorting
approach with increasingly higher benefits as the number of
Gaussians increases.

Similar to Schiitz et al. [73], we identify the indices of all
visible Gaussians as well as their depth during pre-processing
and write them to compacted buffers used for depth sorting

14

through the use of an atomic counter. An important change
we make to optimize training performance is that we do not
apply this compaction to the intermediate Gaussian values
needed for rasterization and blending. This allows our imple-
mentation to avoid an additional indirection during gradient
computation in the backward pass.

B.3. Per-Gaussian Backward

A major part of the speedup in our optimized implementa-
tion comes from the per-Gaussian backward pass (Sec. 3.2)
proposed by Mallick et al. [56]. It requires three major
changes to the implementation. First, additional buffers are
allocated to store the intermediate color and transmittance
after every 32" Gaussian as well as the final number of con-
tributing Gaussians at each pixel. Note that the size of these
buffers can easily be determined from the known lengths
of the per-tile lists. Second, the forward pass for blending
needs to fill these buffers with the corresponding values,
which introduces negligible overhead. Third, the backward
pass for blending now operates on so-called buckets of 32
Gaussians each where each bucket is associated with a sin-
gle tile. For each bucket, 32 threads (i.e., one warp) are
launched with each thread accumulating the gradient of a
single Gaussian across the tile associated with the respective
bucket. Starting from the buckets initial color and transmit-
tance at each pixel as written in the forward pass, the threads
replay the blending process using warp-level primitives to
efficiently compute the necessary gradients. Finally, each
thread writes the accumulated gradients to global memory
using atomics as Gaussians can be inside multiple buckets
across tiles. We refer the reader to the the original paper for
further details [56].

In addition to integrating our changes with respect to
early stopping and numerical stability (see Sec. 3.1), we also
extend the idea of Mallick et al. for improved performance.
In their implementation, the first thread in each warp repeat-
edly loads the alpha blending state for the next pixel from
global memory. As threads must remain synchronized, the
entire warp stalls on these global loads. We optimize this by
having all 32 threads in the warp collaboratively load a batch
of alpha blending states into shared memory (one per thread)
before they are needed. From that point on, the first thread in
each warp reads the next state directly from shared instead
of global memory. Because shared memory access has much
lower latency than global memory, this significantly reduces
warp stalls. Profiling shows that this change improves the
kernel runtime by up to 2x.

C. Further Experiments and Results

In the following, we present results of multiple experiments
that are complementary to the evaluation in the main paper.

Table 6. Inference frame rates for all 13 scenes from the Mip-NeRF360, Tanks and Temples, and Deep Blending datasets [2, 26, 42]. The
depicted values are the average frames per second when rendering the test set of the respective scene 100 times at the native resolution.
For benchmarking 3DGS, we follow Hahlbohm e al. [24] and bake all activation functions before rendering to avoid any PyTorch-related
overhead. For Ours, we add an inference-optimized version of the forward pass to our testbed where we enable all improvements (cf. Sec. 3)
that accelerate inference.

Bicycle Flowers Garden Stump Treehill Bonsai Counter Kitchen Room Train Truck DrJohnson Playroom‘Average

3DGS [37] 161.8 387.8 223.7 329.7 3062 4054 261.0 219.6 2532 317.5 340.8 2213 348.0 290.4

Ours 547.1 9013 6285 821.0 824.7 1239.7 10183 7454 1122.4 833.0 863.1 919.2 1280.8 | 903.4
— speedup 3.4x 23x 2.8x 25x 27x 3.1x 39x 34x 44x 2.6x 2.5x 4.2x 3.7 3.1x
C.1. Inference Rendering Performance closely matches the original implementation by Yu er al.

For the second version, we closely adhere to the underly-
ing theory but use a more direct and efficient approach for
enforcing the implied size constraints during optimization.
Specifically, we in-place clip the scales of each Gaussian
from below based on the 3D smoothing filter after each
optimizer step:

Apart from rapid optimization, another highly relevant aspect
of efficient 3D Gaussian Splatting is fast inference rendering.

Of course, many of the improvements that we implement
in our testbed (Sec. 3) positively influence frame rate. In
Tab. 6, we show that an inference-optimized version of the
forward pass from our testbed leads to more than 3x faster
rendering during inference.

Vv K3D))

S = max(sg, ~—

C.2. Efficient Anti-Aliasing k

We find that this retains all advantages while being signifi-
cantly cheaper to compute as this update is independent of
gradient computations. Furthermore, we find that accounting
for the change in volume of each Gaussian by modifying its
opacity is not needed in practice (cf. Steiner et al. [74]), al-
lowing for further simplifications. To accelerate the repeated
computation of 7, during training, we use a fused CUDA
implementation by Hahlbohm et al. [24].

The second extension of Yu et al. is a 2D Mip filter that
mitigates artifacts when rendering Gaussians from further
away or with larger focal length than during training. It is an

(f N extension to the 2D Gaussian filter that Kerbl et al. use in the
D, = max {]ln(uk)-n} > ,

In Mip-Splatting [98], Yu et al. propose two extensions for
optimization and rendering that, in combination, effectively
prevent aliasing artifacts that occur in the original 3DGS
approach when changing the sampling rate after training,
e.g., by adjusting the focal length or camera distance.

The first extension is a 3D smoothing filter that prevents
Gaussians from becoming smaller than the maximal sam-
pling frequency induced by the images used for training. For
each primitive, they define the maximal sampling rate of the
k™ Gaussian as

d @) original 3DGS [37] to prevent aliasing caused by projected
" 2D Gaussians falling between the pixels due to being too

where 1,,() is an indicator function stating whether the small. Kerbl et al. use a 2D Gaussian filter with variance
input point is visible in the n™ training image, N is the r3p (0.3 by default):
number of training images, f,, is the focal length of the n® $op = Sop + A3pl. 10)
training view in pixel units, and d,, is the z-depth of p, for
the respective view. As Uy, changes whenever i, is updated
during optimization, Yu et al. recompute this value for all
Gaussians every 100 iterations during training.

For rendering, the 3D smoothing filter is applied through
a Gaussian low-pass filter that influences the three scales sy,
and the opacity oy of each Gaussian:

n=1

While this approach of dilating every Gaussian works very
well during optimization, it does cause aliasing issues during
inference. As the virtual camera moves further from a Gaus-
sian it becomes smaller and smaller until the point where
Sop in Eq. (10) is dominated by the dilation kernel, which
leads to increasingly blurry renderings. To avoid this, Yu et
al. multiply a view-dependent compensation factor onto the

So= 52 1 Hj;) and &, ' ‘dlag(szy o, opacity of each Gaussian:
v? |diag(s; + ;§)| Sop|
(8) 0= 8 o (11
where r3p is a hyperparameter controlling the variance of |20
the Gaussian filter (0.2 by default). Note that because the full approach of Yu et al. combines
While disabled by default, we implement two version the 3D smoothing filter with this 2D Mip filter, they use a
of this 3D smoothing filter in Faster-GS. The first version smaller variance for the 2D Gaussian filter (0.1 by default).

15

1x Resolution

0.5x Resolution

2x Resolution

Figure 3. We show renderings of two of our models. The first one (top) was trained without anti-aliasing techniques, the second one (bottom)
has them enabled. It is clearly visible that rendering at a different resolution compared to the one used during training (1x) leads to aliasing
artifacts (top). The implemented anti-aliasing techniques significantly reduce these artifacts leading to higher visual fidelity (bottom).

Table 7. Quantitative comparisons of approaches for anti-aliasing
based on Mip-Splatting on the nine scenes from the Mip-NeRF360
dataset [2]. All approaches optimize to the same quality, but the
anti-aliased version of Faster-GS trains much faster and requires
less VRAM compared to the original implementation [98]. We
highlight the significant speedup from our simplified 3D smoothing
filter as well as the a more consistent number of Gaussians due to
our revised backward pass for the 2D Mip filter.

Table 8. Single-scale training and multi-scale evaluation on the nine
scenes from the Mip-NeRF360 dataset [2]. For both approaches,
training is done at the default scene resolution, i.e., with 4x/2x
downsampling for outdoor/indoor scenes respectively. We then
evaluate the model at the training resolution (1x) as well as at half
(0.5%) and double (2x) that resolution for each scene. The results
confirm the effectiveness of the anti-aliased version of Faster-GS.

PSNR'
PSNR" Traint VRAMY #Gs 1x Res. 0.5x Res. 2x Res.

Mip-Splatting [98] 27.53 19m56s 8.0GiB 2.82M Ours 27.56 25.11 25.73
Ours 27.56 4m31s 6.1GiB 2.73M + full anti-aliasing 27.54 28.39 26.87

+ original 3D filter ~ 27.53 5Sm58s 6.3GiB 2.71M

+ our 3D filter 27.55 4m32s 6.1GiB 2.72M

+2D MIP ﬁl,ter) 27.54 4m30s 6'2G}B 2.78M detach the compensation factor Eq. (11) from the gradient

+ full anti-aliasing ~ 27.54 4m31ls 6.1GiB 2.70M

To complement the 3D smoothing filter, we also integrate
the 2D Mip filter into Faster-GS. For optimal performance,
we make sure to use the smaller opacity values resulting from
Eq. (11) to when computing opacity-aware bounding boxes
(see Sec. 3.2). We also find that the derivatives of Eq. (11)
w.r.t. ¥yp can be numerically unstable causing gradients to
explode. When investigating this, we found that the original
implementation [98] frequently clips extreme values, while
re-implementations [56, 65] compute gradients in a way that
does not match the analytical derivative and it is unclear
whether this is done on purpose. We find that a much more
effective and practical approach to this issue is to simply

16

computation for 3,p. Note that we still provide a reasonably
stable implementation for the full analytical derivative that
can optionally be enabled.

In Tab. 7, we show results for a single-scale training and
same-scale evaluation experiment on the nine scenes from
the Mip-NeRF360 dataset [2]. Our simplifications for the 3D
smoothing filter effectively eliminate any training overhead
compared to the original implementation [98]. We also find
that our changes to the backward pass of the 2D Mip filter
result in more stable optimization behavior as indicated by
the average number of Gaussians that is more similar to the
baseline. Specifically, in the original implementation as well
as in Faster-GS with only the 2D Mip filter enabled, we
find that the optimization sometimes creates additional tiny
and elongated, i.e., degenerate Gaussians, which slightly re-

duce overall quality of the reconstruction. Most importantly,
however, we find that our optimized implementation of the
two extensions from Yu et al. [98] enables fully anti-aliased
training and rendering inside our framework. Note that we
adjusted the official Mip-Splatting implementation to use
the fused SSIM implementation from Taming-3DGS [56]
and the updated opacity learning rate for fair comparison
(cf. Sec. 4.1). We further validate the effectiveness of the
implemented anti-aliasing approach in Tab. 8 and Fig. 3.

C.3. Fast MCMC Densification

In their work 3DGS-MCMC, Kheradmand et al. [39] pro-
pose an alternative approach for densification that treats the
set of 3D Gaussians as Markov Chain Monte Carlo (MCMC)
samples. Based on Stochastic Gradient Langevin Dynam-
ics (SGLD) updates, they add noise to the Gaussian means
after each training iteration. The splitting, cloning, and prun-
ing steps used in adaptive density control [37] are replaced
by a re-localization scheme that tries to preserves sample
probability. Gaussian are selected for re-localization when
they can no longer meaningfully contribute to renderings,
i.e., when they are small or have low opacity. To encour-
age optimal distribution of a preset number of Gaussians,
Kheradmand et al. also add regularization terms to the loss
function.

This approach to 3DGS densification has three main ad-
vantages: it reduces reliance on the initial point cloud, al-
lows for specifying the number of Gaussians prior to opti-
mization, and it leads to improved rendering quality. These
advantages motivate us to integrate an optimized version
into our Faster-GS framework. Specifically, we fuse the
noise injection step into a single CUDA kernel, as we found
that it is a main bottleneck w.r.t. training time. In Tab. 9,
we compare our optimized version with the original imple-
mentation [39] on the nine scenes from the Mip-NeRF360
dataset [2]. Note that we adjusted the original implementa-
tion of 3DGS-MCMC [39] to use the fused SSIM implemen-
tation from Taming-3DGS [56] for fair comparison.

For the sake of reproducibility, we provide the target
number of Gaussians for the nine scenes in alphabetical
order: 6131954, 1244819, 1222956, 3636448, 5834784,
1852335, 1593376, 4961797, 3783761 (values taken from
Steiner et al. [74]).

Table 9. Quantitative comparison of our and the original imple-
mentation [39] for MCMC densification on the nine scenes from
the Mip-NeRF360 dataset [2]. While both versions achieve similar
quality, our optimized implementation is significantly faster and
uses less VRAM during training.

PSNR' Train* VRAMY
3DGS-MCMC [39] 27.83 27m22s 8.9GiB
Ours 28.00 6ml7s 7.2GiB

C.4. About Gaussian Truncation and Opacity

In this subsection, we will investigate the effects of truncat-
ing Gaussians at different standard deviations as well as an
alternative interpretation of the Gaussian opacities in 3DGS.

By definition, Gaussians have infinite support, i.e., have a
non-zero value at any query point. For rendering a Gaussian,
however, the near-zero values obtained when querying it
far away from its mean can safely be skipped. Therefore,
the original 3DGS approach [37] truncates the projected 2D
Gaussians at roughly 3.33¢. Importantly, Kerbl et al. do not
solely truncate based on the standard deviation of the 2D
Gaussian as defined by Y,p (see Eq. (2)) but also factor in
opacity. In their implementation, they achieve this by skip-
ping all fragments during blending where the computed trans-
parency value « (see Eq. (3)) is below a threshold 7, = 1/255.
However, because computing « involves the opacity, a Gaus-
sian with an opacity below 7, can never be visible or receive
gradients in the original implementation. Therefore, the clip-
ping value of 1/100 used by the opacity reset enforces an
upper bound for 7. A larger threshold would result in all
fragments being discarded after the first reset. This limit
results in truncation at /—21n(%/100) ~ 3.03 standard de-
viations for Gaussians that have an opacity close to one. In
other words, the approach for implicit Gaussian truncation
based on fragment o used in the original 3DGS implementa-
tion prevents consistent, opacity-independent truncation at
fewer than 3.03 standard deviations during training.

We propose a modification that can avoid this issue. Our
idea is to check whether the response of a Gaussian at a given
pixel is below 7, before multiplying by the opacity. This
then allows for truncation at fewer standard deviations and
also addresses an issue w.r.t. how 3DGS computes opacity
gradients in the backward pass that was recently brought

Table 10. Quantitative comparisons of truncating Gaussians at
different standard deviations on the nine scenes from the Mip-
NeRF360 dataset [2]. We find that densification creates fewer
Gaussians when truncating at 1/20 leading to reduced quality.
While our modification for opacity-independent truncation slows
down training, we think that the increased flexibility provides an
interesting avenue for future work. We highlight that the most
aggressive truncation (1) makes it so the minimum opacity of a
contributing fragment is ~(0.61, which means Gaussians are close
to opaque. All configurations use our full anti-aliasing (see Tab. 7).

PSNR" Train* VRAM' #Gs'
3.33¢ (default) 27.54 4m3ls 6.1GiB 2.70M
40 27.54 5m05s 6.4GiB 2.78M
40 w/ modification 27.65 5m27s 6.6GiB 2.78M
3.330 w/ modification ~ 27.57 5m07s 6.4GiB 2.79M
30 w/ modification 27.62 4m55s 6.3GiB 2.78M
20 w/ modification 2723 3m4ls 5.5GiB 2.22M
lo w/ modification 25.86 2m26s 4.5GiB 1.39M

17

up by Hahlbohm ez al. [23]: The analytical derivatives of
Egs. (3) and (4) provide a non-zero gradient for the opacity
of a Gaussian even when its value is zero. In the original
implementation, Kerbl et al. disregard these gradients as
they interpret the opacity as part of the Gaussian response.
While this is a reasonable approach that clearly works well in
practice, we still think it is worth investigating. We also think
that more aggressive truncation that uses, e.g., 20 could be
an interesting avenue for future work that renders splats as
opaque 2D ellipses to avoid the need for depth-ordered alpha
blending.

We show results for different truncation configurations
in Tab. 10. Note that all version use our full anti-aliasing as
we find that it integrates particularly well with the opacity-
independent approach for truncation.

C.5. Additional 4D Reconstruction Results

We also tested our extension to 4D Gaussians on three real
scenes from the multi-view dataset by Li ef al. [47]. We
preprocess scenes similar to Yang et al. to obtain an initial
point cloud and use a consistent hyperparameter configura-
tion for their baseline [93] and our implementation: Scenes
are trained and evaluated at 1352x1014 using the provided
train/test splits, models use the standard view-dependent
color parametrization from 3DGS (SH up to degree three),
and training is done for 30000 iterations with a batch size of
four. Results are shown in Tab. 11.

Table 11. Comparison with the reference implementation [93]
for our extension to 4D Gaussians on three scenes (Coffee Mar-
tini, Cook Spinach, and Flame Steak) from the neural 3D video
dataset [47].

PSNR' Train* VRAM*
Yang et al. [93] 30.13 96m43s 8.7GiB
Ours 30.54 18m57s 3.7GiB

18

	Introduction
	Preliminaries and Related Work
	3D Gaussian Splatting (3DGS)
	Improvements and Follow-up Works

	Method
	Scope and Basis
	A Survey of Recent Improvements
	Refining Optimized Implementations
	Extension to Dynamic Scenes

	Evaluation
	Setup
	Results
	Dynamic Scenes

	Discussion, Limitations, and Future Work
	Conclusion
	3DGS Training Details
	Implementation Details
	Testbed Basis
	Separate Sorting
	Per-Gaussian Backward

	Further Experiments and Results
	Inference Rendering Performance
	Efficient Anti-Aliasing
	Fast MCMC Densification
	About Gaussian Truncation and Opacity
	Additional 4D Reconstruction Results

